Molecular targeting of the Aurora-A/SMAD5 oncogenic axis restores chemosensitivity in human breast cancer cells

نویسندگان

  • Mateusz Opyrchal
  • Malgorzata Gil
  • Jeffrey L. Salisbury
  • Mathew P. Goetz
  • Vera Suman
  • Amy Degnim
  • James McCubrey
  • Tufia Haddad
  • Ianko Iankov
  • Chenye B. Kurokawa
  • Nicole Shumacher
  • James N. Ingle
  • Evanthia Galanis
  • Antonino B. D’Assoro
چکیده

Although the majority of breast cancers initially respond to the cytotoxic effects of chemotherapeutic agents, most breast cancer patients experience tumor relapse and ultimately die because of drug resistance. Breast cancer cells undergoing epithelial to mesenchymal transition (EMT) acquire a CD44+/CD24-/ALDH1+ cancer stem cell-like phenotype characterized by an increased capacity for tumor self-renewal, intrinsic drug resistance and high proclivity to develop distant metastases. We uncovered in human breast tumor xenografts a novel non-mitotic role of Aurora-A kinase in promoting breast cancer metastases through activation of EMT and expansion of breast tumor initiating cells (BTICs). In this study we characterized the role of the Aurora-A/SMAD5 oncogenic axis in the induction of chemoresistance. Breast cancer cells overexpressing Aurora-A showed resistance to conventional chemotherapeutic agents, while treatment with alisertib, a selective Aurora-A kinase inhibitor, restored chemosensitivity. Significantly, SMAD5 expression was required to induce chemoresistance and maintain a breast cancer stem cell-like phenotype, indicating that the Aurora-A/SMAD5 oncogenic axis promotes chemoresistance through activation of stemness signaling. Taken together, these findings identified a novel mechanism of drug resistance through aberrant activation of the non-canonical Aurora-A/SMAD5 oncogenic axis in breast cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aurora-A Mitotic Kinase Induces Endocrine Resistance through Down-Regulation of ERα Expression in Initially ERα+ Breast Cancer Cells

Development of endocrine resistance during tumor progression represents a major challenge in the management of estrogen receptor alpha (ERα) positive breast tumors and is an area under intense investigation. Although the underlying mechanisms are still poorly understood, many studies point towards the 'cross-talk' between ERα and MAPK signaling pathways as a key oncogenic axis responsible for t...

متن کامل

CRISPR/Cas9, a new approach to successful knockdown of ABCB1/P-glycoprotein and reversal of chemosensitivity in human epithelial ovarian cancer cell line

Objective(s): Multidrug resistance (MDR) is a major obstacle in the successful chemotherapy of ovarian cancer. Inhibition of P-glycoprotein (P-gp), a member of ATP-binding cassette (ABC) transporters, is a well-known strategy to overcome MDR in cancer. The aim of this study was to investigate the efficiency and ability of CRISPR/Cas9 genome editing technology to knockdown ABCB1 gene expression ...

متن کامل

The Effects of Tamoxifen in Combination with Tranilast on CXCL12- CXCR4 Axis and Invasion in Breast Cancer Cell Lines

It has been reported that CXCL12 binding to CXCR4 induces several intracellular signaling pathways, and enhances survival, proliferation, and migration of malignant cells. Herein we examined the effects of anti-estrogen tamoxifen and anti-allergic tranilast drugs as a single or in combination on invasion by two in vitro invasion assays, wound-healing and matrigel invasion on MCF-7 and MDA-MB-23...

متن کامل

Nanolipoparticles-mediated MDR1 siRNA delivery reduces doxorubicin resistance in breast cancer cells and silences MDR1 expression in xenograft model of human breast cancer

Objective(s): P-glycoprotein (P-gp) is an efflux protein, the overexpression of which has been associated with multidrug resistance in various cancers. Although siRNA delivery to reverse P-gp expression may be promising for sensitizing of tumor cells to cytotoxic drugs, the therapeutic use of siRNA requires effective carriers that can deliver siRNA intracellularly with minimal toxicity on targe...

متن کامل

Inhibition of Cdk2 activity decreases Aurora-A kinase centrosomal localization and prevents centrosome amplification in breast cancer cells

Centrosome amplification plays a key role in the origin of chromosomal instability (CIN) during cancer development and progression. In this study, MCF-7 breast cancer cell lines harboring abrogated p53 function (vMCF-7DNp53) were employed to investigate the relationship between induction of genotoxic stress, activation of cyclin-A/Cdk2 and Aurora-A oncogenic signalings and development of centro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017